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Reminder: shortcomings of linear regression

Last time we talked about:

1. Predictive ability: recall that we can decompose prediction
error into squared bias and variance. Linear regression has low
bias (zero bias) but suffers from high variance. So it may be
worth sacrificing some bias to achieve a lower variance

2. Interpretative ability: with a large number of predictors, it can
be helpful to identify a smaller subset of important variables.
Linear regression doesn’t do this

Also: linear regression is not defined when p > n (Homework 4)

Setup: given fixed covariates xi ∈ Rp, i = 1, . . . n, we observe

yi = f(xi) + εi, i = 1, . . . n,

where f : Rp → R is unknown (think f(xi) = xTi β
∗ for a linear

model) and εi ∈ R with E[εi] = 0,Var(εi) = σ2,Cov(εi, εj) = 0

2



Example: subset of small coefficients

Recall our example: we have n = 50, p = 30, and σ2 = 1. The
true model is linear with 10 large coefficients (between 0.5 and 1)
and 20 small ones (between 0 and 0.3). Histogram:
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The linear regression fit:

Squared bias ≈ 0.006
Variance ≈ 0.627
Pred. error ≈ 1 + 0.006 + 0.627 ≈ 1.633

We reasoned that we can do better by shrinking the coefficients, to
reduce variance
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Linear regression:
Squared bias ≈ 0.006
Variance ≈ 0.627
Pred. error ≈ 1 + 0.006 + 0.627
Pred. error ≈ 1.633

Ridge regression, at its best:
Squared bias ≈ 0.077
Variance ≈ 0.403
Pred. error ≈ 1 + 0.077 + 0.403
Pred. error ≈ 1.48
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Ridge regression

Ridge regression is like least squares but shrinks the estimated
coefficients towards zero. Given a response vector y ∈ Rn and a
predictor matrix X ∈ Rn×p, the ridge regression coefficients are
defined as

β̂ridge = argmin
β∈Rp

n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1

β2j

= argmin
β∈Rp

‖y −Xβ‖22︸ ︷︷ ︸
Loss

+λ ‖β‖22︸︷︷︸
Penalty

Here λ ≥ 0 is a tuning parameter, which controls the strength of
the penalty term. Note that:

I When λ = 0, we get the linear regression estimate

I When λ =∞, we get β̂ridge = 0

I For λ in between, we are balancing two ideas: fitting a linear
model of y on X, and shrinking the coefficients
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Example: visual representation of ridge coefficients

Recall our last example (n = 50, p = 30, and σ2 = 1; 10 large true
coefficients, 20 small). Here is a visual representation of the ridge
regression coefficients for λ = 25:
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Important details

When including an intercept term in the regression, we usually
leave this coefficient unpenalized. Otherwise we could add some
constant amount c to the vector y, and this would not result in the
same solution. Hence ridge regression with intercept solves

β̂0, β̂
ridge = argmin

β0∈R, β∈Rp
‖y − β01−Xβ‖22 + λ‖β‖22

If we center the columns of X, then the intercept estimate ends up
just being β̂0 = ȳ, so we usually just assume that y,X have been
centered and don’t include an intercept

Also, the penalty term ‖β‖22 =
∑p

j=1 β
2
j is unfair is the predictor

variables are not on the same scale. (Why?) Therefore, if we know
that the variables are not measured in the same units, we typically
scale the columns of X (to have sample variance 1), and then we
perform ridge regression
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Bias and variance of ridge regression

The bias and variance are not quite as simple to write down for
ridge regression as they were for linear regression, but closed-form
expressions are still possible (Homework 4). Recall that

β̂ridge = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖22

The general trend is:

I The bias increases as λ (amount of shrinkage) increases

I The variance decreases as λ (amount of shrinkage) increases

What is the bias at λ = 0? The variance at λ =∞?
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Example: bias and variance of ridge regression

Bias and variance for our last example (n = 50, p = 30, σ2 = 1; 10
large true coefficients, 20 small):
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Mean squared error for our last example:
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Ridge regression in R: see the function lm.ridge in the package
MASS, or the glmnet function and package
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What you may (should) be thinking now

Thought 1:

I “Yeah, OK, but this only works for some values of λ. So how
would we choose λ in practice?”

This is actually quite a hard question. We’ll talk about this in
detail later

Thought 2:

I “What happens when we none of the coefficients are small?”

In other words, if all the true coefficients are moderately large, is it
still helpful to shrink the coefficient estimates? The answer is
(perhaps surprisingly) still “yes”. But the advantage of ridge
regression here is less dramatic, and the corresponding range for
good values of λ is smaller
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Example: moderate regression coefficients

Same setup as our last example: n = 50, p = 30, and σ2 = 1.
Except now the true coefficients are all moderately large (between
0.5 and 1). Histogram:
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The linear regression fit:

Squared bias ≈ 0.006
Variance ≈ 0.628
Pred. error ≈ 1 + 0.006 + 0.628 ≈ 1.634

Why are these numbers essentially the same as those from the last
example, even though the true coefficients changed?
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Ridge regression can still outperform linear regression in terms of
mean squared error:
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Only works for λ less than ≈ 5, otherwise it is very biased. (Why?)
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Variable selection

To the other extreme (of a subset of small coefficients), suppose
that there is a group of true coefficients that are identically zero.
This means that the mean response doesn’t depend on these
predictors at all; they are completely extraneous.

The problem of picking out the relevant variables from a larger set
is called variable selection. In the linear model setting, this means
estimating some coefficients to be exactly zero. Aside from
predictive accuracy, this can be very important for the purposes of
model interpretation

Thought 3:

I “How does ridge regression perform if a group of the true
coefficients was exactly zero?”

The answer depends whether on we are interested in prediction or
interpretation. We’ll consider the former first
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Example: subset of zero coefficients

Same general setup as our running example: n = 50, p = 30, and
σ2 = 1. Now, the true coefficients: 10 are large (between 0.5 and
1) and 20 are exactly 0. Histogram:
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The linear regression fit:

Squared bias ≈ 0.006
Variance ≈ 0.627
Pred. error ≈ 1 + 0.006 + 0.627 ≈ 1.633

Note again that these numbers haven’t changed

15



Ridge regression performs well in terms of mean-squared error:
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Why is the bias not as large here for large λ?
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Remember that as we vary λ we get different ridge regression
coefficients, the larger the λ the more shrunken. Here we plot
them again λ
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The red paths correspond to the
true nonzero coefficients; the gray
paths correspond to true zeros.
The vertical dashed line at λ = 15
marks the point above which ridge
regression’s MSE starts losing to
that of linear regression

An important thing to notice is that the gray coefficient paths are
not exactly zero; they are shrunken, but still nonzero
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Ridge regression doesn’t perform variable selection

We can show that ridge regression doesn’t set coefficients exactly
to zero unless λ =∞, in which case they’re all zero. Hence ridge
regression cannot perform variable selection, and even though it
performs well in terms of prediction accuracy, it does poorly in
terms of offering a clear interpretation

E.g., suppose that we are studying the level of
prostate-specific antigen (PSA), which is often
elevated in men who have prostate cancer. We
look at n = 97 men with prostate cancer, and
p = 8 clinical measurements.1 We are inter-
ested in identifying a small number of predic-
tors, say 2 or 3, that drive PSA

2

1Data from Stamey et al. (1989), “Prostate specific antigen in the diag...”
2Figure from http://www.mens-hormonal-health.com/psa-score.html
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Example: ridge regression coefficients for prostate data

We perform ridge regression over a wide range of λ values (after
centering and scaling). The resulting coefficient profiles:
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This doesn’t give us a clear answer to our question ...
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Recap: ridge regression

We learned ridge regression, which minimizes the usual regression
criterion plus a penalty term on the squared `2 norm of the
coefficient vector. As such, it shrinks the coefficients towards zero.
This introduces some bias, but can greatly reduce the variance,
resulting in a better mean-squared error

The amount of shrinkage is controlled by λ, the tuning parameter
that multiplies the ridge penalty. Large λ means more shrinkage,
and so we get different coefficient estimates for different values of
λ. Choosing an appropriate value of λ is important, and also
difficult. We’ll return to this later

Ridge regression performs particularly well when there is a subset
of true coefficients that are small or even zero. It doesn’t do as
well when all of the true coefficients are moderately large; however,
in this case it can still outperform linear regression over a pretty
narrow range of (small) λ values
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Next time: the lasso

The lasso combines some of the shrinking advantages of ridge with
variable selection

(From ESL page 71)
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